Minggu, 31 Juli 2011

Peran Ahli Kimia dalam Ilmu Kedokteran Molekuler

Perkembangan ilmu kedokteran dunia pada umumnya dan di Indonesia pada khususnya memasuki kajian dalam tingkat molekuler.

Ilmu kedokteran molekuler dapat diartikan sebagai ilmu yang mempelajari dasar molekuler berbagai penyakit. Berbagai kajian molekuler ilmu kedokteran diantaranya adalah Stem Cell, Rekayasa genetik dan salah satu diantarannya adalah Herbal. Herbal yang merupakan produk alami banyak dikaji mekanisme molekuler dalam mengobati penyakit. Sudah menjadi rahasia umum bahwa herbal indonesia dan herbal dari negara lain sudah terbukti mampu mengobati berbagai penyakit seperti diabetes, kanker, leukimia, thalassemia dll. Hanya saja mekanisme kerja senyawa aktif maupun crude ekstrak dari herbal tersebut dalam dunia kedokteran belum banyak diketahui. Publikasi internasional tentang mekanisme molekuler herbal yang berasal dari Indonesia belum sebanyak di negara lain. Itu yang menjadi alasan mengapa herbal Indonesia yang kalah bersaing di pasaran dibandingkan dengan herbal dari Cina misalnnya.

Dalam kedokteran molekuler para penelitinya yang sebagian besar berasal dari fakultas kedokteran memiliki keterbatasan dalam kemampuan menganalisis herbal. Pada umumnya para dosen di Fakultas Kedokteran beharap akan ada mahasiswa dengan latar belakang kimia atau farmasi yang mampu mengeksktrak crude maupun senyawa aktif berbagai herbal. Mereka akan membandingkan kinerja senyawa aktif dari produk alami dengan produk sintetik. Atau mengkombinasikan keduanya. Sebagai contoh adalah dalam pengobatan kanker. Ada kombinasi dengan senyawa turunan terpenoid yang merupakan produk alami dengan siRNA yang merupakan senyawa sintetik.

Untuk lebih jelasnya kita dapat mengkaji mekanisme molekuler penyakit kanker oleh herbal X misalnya. Herbal X yang mengandung senyawa aktif Y misalnya mampu menekan resiko kanker pada stadium tertentu melalui mekanisme A sedangkan siRNA mampu menekan melalui mekanisme Y sehingga penyebaran kanker akan lebih dapat dikurangi. Herbal pada umumnya mampu memicu sel kanker untuk membunuh dirinya sendiri yang dikenal dengan istilah Apoptosis. Jadi sering terjadi kesalahpahaman pada masyarakat umum bahwa herbal tertentu mampu mengobati berbagai penyakit kanker. Itu boleh jadi benar tapi pasti tidak tepat. Benar bukan berarti tepat. Contoh wortel baik untuk mata. Dengan asumsi kelinci yang makan wortel tidak pernah pakai kacamata, Itu benar tapi tidak tepat.

Begitu pula dengan herbal pengobat kanker. Senyawa aktif yang baik untuk kanker payudara belum tentu baik untuk kanker prostate misalnya. Mekanisme kerjanya berbeda. Dalam skala molekuler invitro dikenal dengan IC50 cell lines. Dalam mekanisme molekuler apoptosis sel kanker dikenal dengan mekanisme molekuler intrinsik dan mekanisme molekuler ekstrinsik atau kombinasi keduanya. Ini yang sekarang banyak dikaji apapun jenis kankernya. Lihat gambar dibawah


Gen P53 sesuai dengan namanya adalah gen yang proteinnya memiliki berat molekul 53 kilodalton. Gen p53 akan terpacu ekspresinya bila terjadi kerusakan DNA. Pada awaknya p53 akan menghambat replikasi sel sehingga sistem perbaikan DNA mempunyai peluang untuk memperbaiki kerusakan yang terjadi. Namun apabila kerusakan tersebut tak dapat diperbaiki, maka p53 akan memicu apoptosis. Jadi dalam hal ini apoptosis merupakan backup mechanisme sekiranya mutasi tak berhasil diperbaiki oleh sistem perbaikan DNA. Pengaruh senyawa aktif dari herbal misalnya akan tampak pada salah satu atau keduanya pada level RNA dan protein. Tetapi perlu diingat untuk menuju gen p53 akan banyak tahap mekanisme yang perlu dikaji. Demikian kajian singkat tentang peran ahli kimia dalam kedokteran molekuler dengan kanker sebagai salah satu contohnya.Akhir kata semoga para ahli kimia apapun latar belakangnya apakah itu kimia analitik, kimia fisik, organik dan biokimia akan mampu berperan dalam kedokteran molekuler.

http://www.chem-is-try.org/artikel_kimia/tips_dan_opini/peran-ahli-kimia-dalam-ilmu-kedokteran-molekuler/

Menghambat Kinerja Enzim Pembentuk Kolesterol

Para peneliti telah menentukan struktur dan mekanisme kerja sebuah enzim yang berperan penting dalam awal pembentukan kolesterol dan faktor keracunan bakteri staph. Bakteri staph merupakan kelompok bakteri yang berkoloni sehingga berbentuk menyerupai setangkai anggur.



Kimiawan dari University of Illinois dan kolaborator yang berasal dari Taiwan mempelajari tipe enzim yang terdapat pada manusia, tumbuhan, jamur, parasit, dan banyak jenis bakteri yang mengawali pembentukan triterpena –salah satu molekul kimia tertua dan paling melimpah di muka bumi. Triterpena merupakan prekursor pembentukan steroid seperti kolesterol.

“Enzim ini merupakan target obat yang penting,” jelas Professor Eric Oldfield, seorang professor kimia dari University of Illinois. “Menghambat aktivitas enzim ini dapat mengarahkan kita kepada penemuan obat penurun kolesterol, antibiotik yang dapat mengobati infeksi bakteri, dan obat yang dapat menyerang parasit yang menyebabkan penyakit tropis seperti wabah Chagas – suatu wabah yang menyebabkan terjadinya kematian mendadak di Amerika Latin.”

Untuk eksperimen ini, tim riset mengambil contoh enzim yang sesuai, dehydrosqualene synthase (CrtM)dari bakteri Staphylococcus aureus. Bakteri staph merupakan jenis bakteri yang umum dapat menyebabkan infeksi, yang terkenal sulit untuk dibasmi. Mekanisme infeksi yang terjadi akibat jenis bakteri ini adalah terbentuknya selubung berwarna keemasan yang disebut staphyloxanthin yang melindungi bakteri tersebut dari sistem imun manusia. CrtM mengkatalisis reaksi awal pembentukan staphyloxanthin, maka dengan menghambat kinerja enzim ini akan membuat bakteri tersebut tidak memiliki selubung pelindung dan akhirnya menjadi rentan diserang oleh sel darah putih sebagai antibodi tubuh kita.

Para peneliti sebelumnya telah mengetahui bentuk CrtM dan produk akhir yang terbentuk, tetapi mereka belum mengetahui cara kerja enzim tersebut. Dengan memahami mekanisme kerja enzim tersebut akan memudahkan para peneliti untuk mendesain inhibitor yang lebih baik, dan bahkan dapat menyesuaikannya untuk target lain.

Tim berhasil mengkristalisasi enzim untuk dianalisis. Kemudian mereka mempelajari struktur kompleks enzim dengan cara X-ray crystallography menggunakan synchrotron yang berada di Advanced Photon Source at Argonne National Laboratory. Mereka menemukan bahwa CrtM menunjukkan reaksi dua tahap, melepaskan dua gugus difosfat dari substrat. Substrat berubah di antara dua sisi aktif dari enzim ketika reaksi berlangsung. Inhibitor yang paling efektif adalah yang dapat berikatan kuat dengan kedua sisi aktif dari enzim ini untuk menghambat kinerja enzim secara keseluruhan.

“Manusia telah mengembangkan cara untuk mengatasi penyakit seperti ini, namun belum pernah memiliki dasar struktural yang jelas,” kata Professor Oldfield, yang juga merupakan professor biofisika di institusi yang sama. “Tetapi sekarang, setelah kita dapat melihat bagaimana protein bekerja, kita telah berada pada posisi yang jauh lebih baik untuk merancang molekul yang dapat melawan infeksi bakteri dan wabah parasit secara lebih efektif, dan juga berpotensi untuk menurunkan kadar kolesterol.”

http://www.chem-is-try.org/artikel_kimia/berita/menghambat-kinerja-enzim-pembentuk-kolesterol/

Unsur Karbon Bukan Berasal dari Big Bang


Teori terbentuknya alam semesta yang saat ini dipercaya dan telah memiliki banyak bukti pendukung adalah teori ledakan besar (Big Bang). Namun pertanyaan besar masih muncul mengenai misteri terbentuknya kehidupan di Bumi setelah terjadinya Big Bang. Telah diketahui bahwa sebenarnya Big Bang tidak memproduksi karbon secara langsung. Lalu bagaimanakah unsur karbon terbentuk sehingga menghasilkan bentuk kehidupan berbasis karbon di Bumi? Pertanyaan itulah yang menjadi dasar riset tim peneliti dari North Carolina State University. Tim ini menggunakan simulasi superkomputer untuk mendemonstrasikan bagaimana karbon terbentuk di bintang untuk membuktikan sebuah teori lama.

Lebih dari 50 tahun yang lalu, seorang astronom bernama Fred Hoyle berhipotesis bahwa isotop karbon-12 (C-12) dapat terbentuk dari tiga atom helium-4 (He-4) atau partikel alfa yang bergabung di dalam inti bintang. Namun, ketiga partikel alfa itu sulit untuk berkombinasi membentuk karbon. Sehingga dari hipotesisnya tersebut, Hoyle beranggapan bahwa terbentuk isotop karbon-12 dengan keadaan energi yang berbeda sehingga memungkinkan terbentuknya karbon di dalam inti bintang. Keadaan baru ini disebut sebagai “keadaan Hoyle”. Eksperimen terakhir menunjukkan bahwa teori tersebut benar namun simulasi pembentukan karbon dari partikel alfa masih belum berhasil.

Fisikawan NCSU, Dean Lee bersama koleganya dari Jerman Evgeny Epelbaum, Hermann Krebs, dan Ulf-G. Meissner telah mengembangkan suatu metode baru yang menjelaskan seluruh cara yang mungkin agar proton dan neutron dapat berikatan satu sama lain di dalam inti. Metode ini disebut sebagai “teori medan efektif” yang diformulasi dari kisi bilangan kompleks.

Bilangan kompleks merupakan bilangan yang terdiri atas bilangan real dan imajiner. Bentuk umum persamaan bilangan kompleks mengandung unit imajiner (i) yaitu akar kuadrat –1. Persamaan yang menggunakan bilangan kompleks tidak dapat menghasilkan solusi apabila hanya digunakan bilangan real saja atau bilangan imajiner saja. Persamaan matematis yang mengandung bilangan kompleks biasanya digambarkan dalam diagram Argand. Diagram ini memuat sumbu-x sebagai bilangan real dan sumbu-y sebagai bilangan imajiner, serta daerah di antaranya disebut bidang kompleks.

Dengan pemodelan yang menggunakan analisis kompleks ini, peneliti dapat mensimulasikan interaksi antar partikel. Ketika peneliti menempatkan 6 proton dan 6 neutron pada kisi kubus dalam simulasi superkomputer tersebut, isotop karbon-12 dalam keadaan Hoyle terbentuk. Melalui hasil tersebut disimpulkan bahwa simulasi ini valid dan terbukti dapat menjelaskan pembentukan karbon.

Dengan menggunakan simulasi superkomputer berbasis bilangan kompleks ini, persamaan yang menggambarkan keadaan Hoyle pada pembentukan karbon-12 di dalam inti bintang dapat dicari. Selain itu, simulasi ini juga dapat menjelaskan bagaimana unsur karbon terbentuk dan kehidupan berbasis karbon di Bumi berawal.

http://www.chem-is-try.org/artikel_kimia/berita/unsur-karbon-bukan-berasal-dari-big-bang/

Jumat, 29 Juli 2011

Menguak Rahasia Melelehnya DNA


Hamburan neutron hingga saat ini telah digunakan untuk menyelidiki struktur serat DNA (deoxyribonucleic acid/asam deoksiribonukleat) pada saat meleleh. Pelelehan DNA terjadi pada rentang suhu tertentu yang menyebabkan ikatan hidrogen antar-basa nitrogen pada untai nukleotida terputus atau terdenaturasi, yang menyebabkan kedua untai nukleotida terpisah.

Metode hamburan neutron memberikan informasi mengenai korelasi antar-pasangan basa nitrogen selama terjadinya denaturasi, yang tidak mungkin dideteksi dengan teknik lainnya. Metode ini digunakan untuk mengkarakterisasi ukuran dari daerah pada DNA yang terdenaturasi ketika terjadi perubahan temperatur, dan ukuran tersebut dapat dibandingkan dengan prediksi ukuran dari model teoritis.

Model Peyrard-Bishop-Dauxois (PBD) memprediksikan bahwa denaturasi DNA yang dipengaruhi suhu akan terjadi sepanjang persambungan kedua nukleotida dengan gerakan seperti “membuka resleting”. Eksperimen ini sangat mendukung kuat prediksi model tersebut hanya pada tahap pertama transisi, setelah molekul DNA dipanaskan. Ekpserimen ini hanya dapat mengukur hingga tahapan pertama transisi karena setelah tahap itu 50% untai DNA akan terdenaturasi, menjadi terkulai dan strukturnya tidak lagi stabil lagi –DNA telah terdenaturasi menjadi potongan-potongan nukleotida.

“Eksperimen ini merupakan verifikasi yang sangat penting terhadap validitas model maupun teori yang mendukung, maka hasil studi ini dapat digunakan secara terpercaya untuk memprediksi perilaku dan karakteristik DNA,” kata Andrew Wildes, seorang ilmuwan instrumentasi dari Institut Laue-Langevin (ILL). “Hasil studi ini dapat membantu untuk memahami proses biologi seperti transkripsi gen dan reproduksi sel, dan hal ini juga membuat kita selangkah di depan dalam aplikasi teknologi seperti menggunakan DNA sebagai penyepit berskala nano atau sebagai komponen komputer.”

“Telah banyak riset yang menghasilkan data yang baik – seperti kurva pelelehan yang baik – mengenai titik transisi, tetapi itu tidak memberitahukan apa yang sebenarnya terjadi. Sebagai contoh apakah 50% DNA yang meleleh adalah setengah molekul DNA yang seluruhnya terdenaturasi dan yang lainnya masih bergabung? Ataukah untai DNA sebagian terpisah? Hamburan neutron memberi kita informasi tentang struktur DNA pada saat proses pelelehan terjadi untuk menjawab pertanyaan-pertanyaan semacam ini,” jelas Michel Peyrard, seorang professor fisika di Ecole Normale Supérieure de Lyon, dan merupakan salah satu penggagas model PBD. “Sama seperti aplikasinya pada perkembangan teknologi, studi ini juga dapat diaplikasikan pada perkembangan biologi, misalnya pada prediksi lokasi gen tertentu pada sekuens untai DNA.”

Eksperimen tentang DNA telah banyak dilakukan jauh sebelum studi ini. Pionir eksperimen DNA adalah Rosalind Franklin yang menunjukkan bahwa hamburan sinar-x pada suatu sampel DNA dapat memberi gambaran mengenai struktur DNA. Berdasarkan eksperimen tersebut, James Watson dan Francis Crick memperkenalkan model struktur DNA heliks berganda (double-helix) pada tahun 1953 yang sangat terkenal hingga saat ini. DNA merupakan molekul dinamis yang mengalami perubahan struktur yang cukup signifikan. Sebagai contoh, DNA di dalam inti sel terbungkus menjadi sebuah kromosom, yang merupakan kumpulan untai DNA dan protein histon hingga berbentuk menyerupai huruf ‘X’, tetapi ketika informasi genetik yang ada di dalamnya harus dipindai, maka DNA harus terurai dan untai DNA memisah untuk memungkinkan informasi genetik di dalamnya dapat terpindai dengan baik membentuk RNA (ribonucleic acid/asam ribonukleat).

http://www.chem-is-try.org/artikel_kimia/menguak-rahasia-melelehnya-dna/

TABEL PERIODIK

Menghapus Kenangan Buruk Dengan Metyrapone

Tim peneliti dari Centre for Studies on Human Stress of Louis-H. Lafontaine Hospital University of Montreal menemukan bahwa mengingat kembali kenangan buruk di bawah pengaruh obat metyrapone dapat mengurangi kemampuan otak untuk merekam kembali emosi negatif yang berhubungan dengan kenangan tersebut. Tim ini ingin menguji teori bahwa memori tidak dapat diubah setelah terekam di dalam otak.



Metyrapone merupakan obat yang dapat mengurangi tingkat kortisol secara signifikan. Kortisol merupakan hormon stress yang berkaitan dengan memori. Dengan memanipulasi tingkat kortisol bersamaan dengan pembentukan memori baru dapat menurunkan emosi negatif yang berkaitan dengan memori tersebut. Meskipun pengaruh metyrapone telah hilang dan level kortisol telah kembali normal, penurunan memori dan informasi negatif tetap ada sehingga efek ini dapat bertahan lama.

Hasil penelitian ini memberikan harapan kepada para penderita sindrom memori seperti stress pasca-trauma. Terapi dengan metyrapone diharapkan dapat menghapus kenangan buruk si penderita. Hingga saat ini metyrapone belum menjadi produk komersial, namun penemuan ini sangat menjanjikan untuk pengobatan klinis di masa depan. Studi lebih lanjut tentang obat metyrapone ini juga diharapkan dapat menambah pemahaman terhadap cara kerja otak dalam menyimpan kenangan buruk.

http://www.chem-is-try.org/artikel_kimia/biokimia/menghapus-kenangan-buruk-dengan-metyrapone/

Kamis, 14 Juli 2011

SENYAWA BENZENA

Benzena memilki rumus molekul C6H6. Bentuk struktur segi enam. Merupakan struktur melingkar dgn 3 ikatan rangkap yg berselang-seling. Ikatan rangkap pd benzena dpt berpindah2 yg dsbut RESONASI. Menurut IUPAC tatanama benzena adalah 1,3,5 siklo heksatriena.



#turunan benzena dgn 1 gugus fungsional adalah :
1. Toluena
2. Fenol
3. Anilin
4. Nitrobenzena
5. Klorobenzena
6. Bromobenzena
7. Benzaldehid
8. Asam benzoat
dan masih byk lagi.
#turunan benzen dgn 2 gugus fungsi. Ada 3 isomer yaitu :
-orto : gugus fungsi di posisi 1 dan 2
-meta : gugus fungsi diposisi 1 dan 3
-para : diposisi 1 dan 4.
Ex/ asam-m-nitro benzoat >m:meta. Reaksi benzena ada 6, yaitu: reaksi halogenesi, nitrasi, alkilasi, asilasi, benzena dgn gas hidrogen, dan sulfonasi.

PROTEIN

Protein merupakan polimer yg monomernya adl asam amino dan terbentuk dgn cara kondensasi. Reaksi pembentukan protein adalah
as.amino 1 + as.amino 2 -> protein + air. Ikatan antar as.amino dalam protein dsbut ikatan peptida. Protein dpt mengalamin denaturasi atau kerusakan. Seperti berubahnya strukt protein dri strukt asalnya, disebabkan karna pemanasan, PH, zat kmia ttntu dll. Uji protein bisa dgn 4 cara yaitu uji biuret, uji xantroprotein, uji millon dan uji belerang.